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SHORT COMMUNICATIONS

The unit-cell dimensions and space group of zinc diethyldithiocarbamate. By S. H. SimonsEN
and Jack War Ho, The University of Texas, Austin, Texas, U.S. A.

(Received 8 January 1953 and in revised form 30 January 1953)

Transparent crystals in the form of elongated plates were
prepared by recrystallization of zinc diethyldithiocar-
bamate (Ethasan-U, furnished by the Monsanto Chemical
Company) from chloroform. The extinction direction was
the direction of elongation and was designated as the
b axis. The crystal was optically negative with a nearly
uniaxial figure using sodium light; no extinction angle
was apparent. The refractive indices were:

o (almost {jc) = 1-659-0-003; B (||b) = 1-733+0-003;
y = 1-737+0-003 .

Powder photographs were taken with filtered copper
radiation and a single crystal was used for rotation and
equi-inclination Weissenberg photographs of the levels
hOl; h11; R2L; and kEO. Laue photographs were taken with
the beam parallel to the ¢ and b axes.

The density, determined by flotation, was 1-50 g.cm.™3,
requiring four formula weights Zn*+[S,CN(C,H;),]; per
unit cell (4-03 calculated).

Zinc diethyldithiocarbamate is monoclinic with:

a = 10:024+0-02; b = 10-804+-0-05; ¢ = 16-00+0-02 A;
g =111°.
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Characteristic extinctions were noted which are those
required by the space group C3;—P2,/c.

The principal lines measured on the powder photograph
are listed in Table 1.

Table 1. Principal lines of powder pattern of
zine diethyldithiocarbamate

d I/, d IjI,
9-34 0-29 3-37 0-10
879 1-00 3-26 0-10
7-46 0-72 3-16 0-15
7-25 0-66 311 0-15
6-18 0-45 3-01 0-10
507 018 2-92 0-12
4-83 0-19 2-84 0-19
4-67 0-08 2-79 0-05
4-44 0-27 270 0-15
4-29 0-38 2-37 0-08
3-81 0-29 2-29 0-10
368 0-19 2-08 0-12
353 0-12

The double Patterson function. By Davip Savre, Joknson Foundation for Medical Physics, University of

Pennsylvania, Philadelphia, Penna., U.S.A.

(Received 2 February 1953)

Since the paper of Patterson (1935) it has been known
that the periodic function P(xX) is given by

P(x) = Sd(t)d(t+x)dv = VI IF(N)[2 exp [22N.x],

and that therefore this most useful function can be
computed immediately from the available X.ray data.
I should like to call attention to a less useful but similar
function which can be calculated approximately from the
data.

Let us call the function

DP(x,y) = S d(t)d(t4+x)d(t+y)dv

the double Patterson of the structure d(x), a name calling
attention to the fact that this function occupies a space
of twice as many dimensions as d(x) or P(x). From the
definition it is seen that a peak in DP at the point X, y
means the existence in d of an atom which has one
neighbour at a distance X and another neighbour at a
distance y; it does not mean merely that there are two
atoms separated by x and two others separated by y.
The function DP thus carries considerably more informa-
tion about d than does P.
Now it is very easy to show that

DP(X’ y) =
sz:: %‘ FN)F(M)F(—N—M) exp [i22(N.Xx+M.y)1,

and that, therefore, the phases of the Fourier coefficients
of DP cannot be known precisely at the start of a struc-
ture problem. But it has been shown by several authors
(for instance, Karle & Hauptmann, 1950) that the phase
of F(N+M) tends to be the same as that of F(N)F(M),
and that this tendency is stronger the larger the magni-
tudes of the three F’s involved. Hence the Fourier co-
efficients of DP, especially the large ones, tend to be real
and positive, and therefore

DP(x,y) = VZ%‘ 2 IFN)[IF(M)|
X |F(—N—M)| exp [:27(N.x+M.y)],

the right-hand side being obtainable immediately from
the diffraction data.

For non-centrosymmetric structures this approximation
is rather drastic, for it gives DP a false center of symmetry.
But for centrosymmetric structures it is probably fairly
accurate. In the case of a model one-dimensional struc-
ture, out of the 95 non-negligible terms only 18 very
small terms should have been negative.



